
2004 Society for Design and Process Science
Printed in the United States of America

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 129-141

A FRAMEWORK FOR UNDERSTANDING THE VISION,
GOALS, INSTRUMENTS AND USES OF SOFTWARE

SERVICES

Martin Henkel
Department of Computer and Systems Sciences, Stockholm University and Royal Institute of
Technology, Stockholm, Sweden

Software services have been suggested for use in several areas such as business-to-business
communication, system integration and as an enabler for virtual enterprises. However, it has not
been clear if the use of services in these different areas is guided by a common vision, and if they
share goals and technical background. By introducing a framework that relates the vision and
goals of software services to different categories of service use, this work presents an overview of
the instruments needed for the development of software services. The framework spans across four
interrelated parts; the vision, goals, instruments and categories of service use. Firstly a single
vision for software services is proposed. This vision is then divided into the three goals of
modularity, integration and discovery. Furthermore, the high-level instruments needed to achieve
each goal are presented. The use of services is classified into four categories depending on reach
and extent i.e.: point wise-internal, point wise-external, infrastructure-internal and infrastructure-
external use. The framework presented in this paper shows how these categories of service utilise
the defined instruments. As an example of framework use, the instruments needed to create a
process-centric service infrastructure for intra -enterprise use is proposed

Keywords: Service oriented computing, e-services, software services

1. Introduction
The terms service, e-service and Web service have begun to be promoted in product launches as

well as academic and industrial research. Standards have been agreed upon to define service
technologies such as SOAP, WSDL and UDDI (Gudin et al., 2002; Chinnici et al., 2003, Bellwood et
al., 2002). Drafts of standards are quickly incorporated in new and existing products. Research has
extended the servic e domain with additions such as repositories and agent-based service brokers.
Clearly, services are drawing a lot of attention.

The vision driving the development of software-services is somewhat ambiguous and not always
obvious. The vendors of Enterprise Application Integration (EAI) servers tout the use of services as a
way to reuse and connect existing applications. In Business-to-Business communication (B2B) services
are used as enablers of a global, open e-market. Identifying and understanding the vision of software
services is important as a first step towards identifying what is required to enable the application of
software-services.

Starting with the vision of software services this paper identifies three basic goals for software
services. These goals are in effect drivers for the development of new products as well as being the
impetus for initiating research into services. To achieve these goals, a set of instruments can be utilised.

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 130

Instruments can be both of technical nature such as a standard technical infrastructure, or of a more
prescriptive nature such as the different ways to decompose and compose software services. The
instruments can be used to solve common problems, such as providing a way to modularise a system
based on services. The instruments required to fulfil each of the three goals are identified and described
in this paper.

When using software services, one can strive towards one or more of the identified goals. Striving
towards several of the defined goals demands the utilisation of several instruments. By classifying uses
of services into categories it is possible to propose a set of instruments that, for each category, is
suitable for goal fulfilment.

By identifying vision, goals, instruments, categories of uses and their interrelation it is possible to
get a structured overview of the uses of software services, along with a set of instruments that are
required to successfully use software services. An overview of the parts in the framework is presented
in Figure 1.

The paper is structured as follows: In the first section the term service is defined and services are
put in context by comparing services and components. In the next section a vision for software services
is proposed. This vision is broad by purpose, so that it encompasses current research issues and
industry trends. In the following section the vision is divided into three goals, each characterizing a
typical issue within the field of software services. Then, the instruments that are needed to fulfil these
goals are presented. These instruments represent a range of differentiated solutions from both academic
research and existing commercial products. In the next section uses of services are categorized, the
chosen criteria of categorization are situations of service use that greatly impact the need for
instruments. Furthermore, each use category is related to the defined goals and instruments. The paper
ends with an example of how to use the framework.

Fig. 1 Overview of the framework

2. Definitions
Disregarding the software domain, a service can be defined as an “act or performance offered by

one party to another” (Lovelock et al. , 1996). From a business perspective, a service can be viewed as a
process that produces value for the consumer of the service. The parties involved in this definition are
not limited to software, i.e. a party can be either human or software. Regardless of whether a service is
used and provided by humans or software, a service does not result in any ownership (Bennett et al. ,
2001b; Dumas et al., 2001). This means that a service is an offering that can be used, compared to a
commodity that can be owned and bought.

Vision

Goal

Instrument

Use Category

Part of

Achieves

Need fulfilment of

Uses

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 131

An application service provider (ASP) is an example of a service where the provider is a software
system, and the consumer is a human.

In this paper, the term software service is used to denote a service that can be used by software
systems, or speaking in software terms, a service can be invoked from other software systems. In this
definition both parties are software programs that communicate, potentially over a network. Just as for
non-software services the consumer and provider of a software service can belong to separate
enterprises. The remainder of this paper will focus on software services.

2.1. Services and Components
Services share many properties with components. Firstly, both services and components offer a

well-defined interface that hides the details of implementation. Secondly, both services and
components are modular so that they can be combined to form new components and services,
respectively. The important difference is that a service is a run-time entity offering a service interface
while a component is a physical/binary entity that needs to be installed before use. Users of
components need to buy them, install them and then use them, while a service user simply finds the
service and uses it (Herzum, 2001). This difference implies that the provider of a service is responsible
for it, even in run-time, while the provider of a component does not necessarily have any responsibility
and control of the run-time environment.

Component technologies like COM+ (Platt, 1999) and EJB (Monson-Haefel, 2001) are useful for
building software services. An EJB component for example, installed and running on a server can be
offered as a service. It can be said that components are developed, but they should be provided as
services (Allen and Frost 1998). This means that components are primarily used as building blocks in
the development phase, whereas services exist in run-time.

Not all components of a system should be provided as services since the user of an application
(software or human) is seldom interested in the inner workings of the system. A black-box view is
preferred. By selecting the components to be provided as services, an uncluttered interface to the
system can be obtained. Thus, the exposed services are commonly (but not necessarily) more coarsely
grained than the components that together implement the service.

Due to the run-time properties of services, it is natural to focus on the service interface and on run-
time communication when discussing services. When one on the other hand is discussing components,
the development, deployment and run-time environments come into focus.

There are then four properties of components and services that can be compared. The comparison
based on these properties is summarized in Table 1.

Table 1 Components and services compared

Property Components Services

Use Buy-install-use Use-pay

Responsibility of
provider

Construction and
delivery

Run-time service
availability

Granularity Application building
block

Application interface

Focus of interest Implementation Communication

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 132

3. Service Vision
A long-term vision behind software services is to enable a global market of well-structured, well-

defined and modular services that are accessible for consumers around the world. In this vision,
services are highly modular resources that can be composed to form new systems and services
(Piccinelli and Stammers, 2001; Péraire and Coleman, 2000; Bennet et al., 2001b). Furthermore, an
important part of the vision is that consumers should be able to select and combine services offered by
providers that might reside on different geographical locations and be provided by different
organisations. The vision includes that services should be platform and program language independent
(Fremantle et al., 2002).

By using services it is possible for organisations to out-source complex functionality to other
organisations (Harumi, 2000), thereby forming virtual organisations or “networked enterprises” (Yang,
2001).

4. Service Goals
The vision of software services can be divided into sub-visions, or goals. Firstly, the functionality

needs to be divided into modular resources. Secondly, these resources must use an interconnection
format that makes them globally useable. Thirdly, consumers must be able to discover and select the
service to use.

Thus, the vision for software services can be divided into three goals; modular resources, global
interfaces and dynamic discovery.

Modular resources: This goal is to provide each resource as a service, instead of encapsulating and
tying them into monolithic applications. The major benefit of creating modular services is that new
systems can be built by combining existing services. This makes it easier to implement changes derived
from evolving requirements. A typical example is the development of new business processes that need
IT support. The notion of services as building blocks for systems presented by Wald and Stammers
(2001) is an example of how to benefit from services as modular resources.

Global interfaces: The goal of services as global interfaces means that services should define and
be used as a standard for connecting software systems. This goal includes removing interconnection
boundaries such as differences in platform, program languages, and geographical location. As a further
step the differences in the way organisations do business that hinder communication can be overcome
by defining a standard way to handle business agreements for services. Standardisation and description
of interfaces and protocols are essential requirements of this goal. Work being conducted on ebXML
and Web service technologies is an example of steps towards achieving this goal (Webber and Kotok,
2001).

Dynamic discovery: At least a partial fulfilment of the goal of modular resources and global
interfaces are fundamental for creating a global market of well-structured, well-defined services that
are accessible for consumers around the world. The goal of dynamic discovery of services consists of
this market, together with consumers who can actively search the market for suitable services offered
by providers. Consumers can select the provider who offers the best price, performance etc, etc. By
constantly searching the market for new providers the consumer can change provider, giving optimal
performance at every moment. The architecture for dynamic evolving systems based on services
presented by Bennet et al. (2001a) is an example of the implementation of this goal.

5. Service Instruments
To achieve the defined goals, development and provisioning of services can utilise a set of

instruments. The following sections state the requirements for each goal and describe a set of
instruments that can be utilised to achieve each goal.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 133

5.1. Instruments for Modular Resources
Representing a major part of an organisation’s resources as modular services requires that the

functionality can be decomposed into services. Decomposition into services should be done in a way
that enables consumers to freely combine services, without the risk of duplicating functionality, and
without the need for excessive customisation to make the services fit together. Constructing a set of
services that are meant to be combined requires stringent decomposition criteria. A set of high-level
criteria for decomposition is thus valuable instruments when striving for the goal of modular resources.

A major criterion for decomposition is if the services should be aimed at either supporting a
technical aspect or an organisational aspect. Technical aspects include (database) transaction handling,
queues and events, persistence etc. Organisational aspects include business processes and tasks. A
service built to support a technical aspect is called a horizontal service (Stahl, 2002), whereas services
that support organisational aspects are called vertical services. Using vertical and horizontal
decompositions is a useful instrument for the development of modular services.

Horizontal services are independent on the business domain. The main benefit of horizontal
services is that they can be used by several applications in different domains, thereby providing a
technical framework for system development. Common horizontal services include error and
transaction handling, asynchronous event handling and security (Brown, 2000). Horizontal services
such as transaction co-ordination and events are commonly provided by middleware products such as
COM+ and products implementing CORBA (Orfali et al., 1996). When developing an application the
decision can be made to simultaneously develop horizontal services that support the entire application.
The horizontal services then become an important part of the technical infrastructure in the application
(Herzum and Sims 2000).

Vertical services are constructed in a context of a business domain. The criterion for structuring
functionality into vertical services is that the service should represent a part of the organisation, or a
need of the organisation. Two example s of decomposition are letting the services represent business
functions (Wald and Stammers 2001), or letting the service interface represent a business process. A
vertical decomposition of services is useful when using services as means of business process
integration. Vertical services are equally important in inter and intra organisational integration.

Decomposition into vertical and horizontal services can be used in combination to utilise the
advantages of both approaches.

5.2. Instruments for Global Interfaces
The use of services as a way to interconnect possibly heterogeneous systems requires the use of an

“interconnection stack” ranging from technical network protocols and interface descriptions to
semantic descriptions of how to use the service. Defining and standardising the levels in such an
interconnection stack give consumers and providers a common means for communication. To provide a
solution for communication differences on each level in the stack is a vital instrument to reaching the
goal of services as global interfaces.

The interconnection stack can be divided into three distinct levels. The first level, technical
infrastructure, consists of the basic “plumbing” needed for services to communicate, regardless of
business domain and provider. The second layer, interface descriptions, is needed to communicate with
a specific service. The third level, the semantic level, is needed to understand the context of service
use. The levels are described further in the following paragraphs.

Technical infrastructure descriptions define how to communicate with the service. These
descriptions include which communication protocols the service can use, such as TCP/IP or UDP.
Technical descriptions also define the use of higher-level communication protocols such as IIOP
(Orfali et al., 1996), SOAP and RMI (Monson-Haefel, 2001). In brief, the technical description is
sufficient for the consumer to connect to the service.

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 134

Interface descriptions define the programmatic interface of the services, that is, the methods that
the service exposes. The description includes method names, parameters and data structures needed to
call the service. These descriptions are commonly done with an interface definition language (IDL). An
example of such a language is the Web Service Description Language (WSDL). In conjunction with
the technical infrastructure the interface description makes it technically possible for a consumer to
connect and call the service.

Semantic descriptions contain the context in which the service can be used, including the meaning
of the methods in the service interface. A simple example of a semantic description for the method
“add(x,y)” is that the method adds two numbers and returns the result. The consumers can certainly call
the method without knowing the semantics, but they can never use it in a meaningful way without the
semantic description. Semantic descriptions may include a set of conditions for use, for example by
referring to standardised business contracts. Meta-data description languages such as the Ontology
Web Language (OWL) can be used to extend the interface descriptions with descriptions at the
semantic level (Smith et al., 2002). Another example of high-level descriptions of services is process
descriptions that define how a set of services can be combined to form a process. An example of a
language for process description is the Business Process Execution Language for Web Services,
BPEL4WS (Curbera et al., 2002). BPEL4WS or other process description languages can be used to
describe typical interaction schemes for consumers and providers. These interaction descriptions can be
seen as a form of semantic description of the context of service use.

All of the above service descriptions are necessary in order to use a service. However, the
descriptions need not be defined in an explicit way or in a way that is interpretable by software.
Making service descriptions interpretable by software systems allows consumers to examine the
service and to adapt to changes in technical infrastructure, interfaces and semantics.

5.3. Instruments for Dynamic Discovery
The goal of dynamic discovery is that a service consumer can switch between providers offering

suitable services. In order to be of any benefit for the consumer, dynamic discovery requires a market
of well-structured services.

Dynamic discovery requires that the consumers can perform searches for suitable services. During
the search the consumer needs are compared to existing services offered by providers. The process of
matching the consumer needs with the offered services is a form of brokering, or “matchmaking”.
Brokering is dependent on a comparable description of both the consumer needs and of the provided
services. Description of consumer needs and services can be done on the technical, interface and
semantic levels.

Brokering can be done by allowing the providers to register their service descriptions in a registry.
A broker that matches the requirements with the contents of the registry can utilise different
approaches to the brokering process. Besides the approach of the broker, the consumer’s way of using
the broker can also impact the outcome of dynamic service discovery.

Approaches to brokering, and different use of brokering are important instruments when
implementing dynamic discovery. Approaches to brokering and consumer’s use of brokering are
described in the following sections.

5.3.1. Approaches to Brokering
The ability of the broker to find the requested service is dependent on the content of the registry and

on the matching algorithms applied to find the service. Given a request from the consumer the broker
searches its registry to find an appropriate provider. The brokering algorithm can be divided into three
basic types; frame-based, specification-based and brokering based on mediator schemes.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 135

Frame-based brokering is a way to search the service descriptions for values of certain fixed
attributes such as name and type of the service (Klein and Bernstein, 2001). Both the service
description and the query for services can be described as collections, or frames of attribute-value
pairs. An example of brokers that are frame -based is brokers that implement the Universal Discovery,
Description and Integration (UDDI) standard.

Specification brokering , or deductive brokering is an extension to frame-based brokering. By
providing the broker with a set of rules relating to how to interpret service descriptions, the broker can
find services by applying the rules to the service descriptions. An example of specification brokering is
if the broker can deal with generalisations. For example, a service that provides global packet
deliveries is a generalisation of a local packet delivery service. When a consumer searches for a local
packet delivery service, the broker can find and return both local and global delivery services by
applying the rule of generalisation. Specification brokering can also be done at the method level, which
has been proposed as an aid in searching software repositories (Rollings and Wing, 1991). Compared
to the frame-based brokering approach the specification-based approach requires a detailed description
of the services on the interface level, and a description meta-model on the semantic level.

Mediator schemes for brokering lets both the provider and consumer actively participate in the
brokering process. The advantage of using a mediator scheme is that the provider and/or the requestor
can actively participate in the brokering process, thereby extending the brokering algorithm. Active
participation can be achieved by using agents representing the provider and/or the requestor. An
example of a broker with agents representing the providers is presented by Helal et al. (2001).

5.3.2. Consumer Use of Brokering
The broker contains the brokering algorithm and a registry of the providers. Consumers can control

the outcome of the brokering process by altering the service request. Another important aspect that the
consumer can affect is the binding time.

Bind time affects how often the consumer searches for a provider. If the search for providers is
performed for each time the service is needed, the consumer can find a new provider as soon as it is
available. This kind of binding is called ultra-late-binding (Bennett et al., 2000) or just-in-time binding
(JIT) (Andrade and Fiadeiro, 2001). JIT binding is not always feasible since it is associated with a
performance overhead. Instead of finding a new provider for each call the requestor can bind to a
provider for the duration of a session. A single session can span across multiple calls, thereby
alleviating the overhead of JIT binding. Yet another approach is to use the same provider in a fixed
time-frame. The fixed time-frame can be chosen to minimise the performance penalties, or be stated in
a contract between the provider and the consumer.

Table 2 summarises the goals and the high-level instruments that can be used to achieve the goals.

Table 2 Goals and instruments

Goal Instruments

Modular
resources

The use of vertical and/or horizontal decomposition. Let services
represent business functions or business processes. Use horizontal
services for transactions, events and security.

Global
Interfaces

Describe and standardise the technical infrastructure, interface and
semantic aspects of provided services.

Dynamic
discovery

Usage of frame, specification or mediator/agent based brokers. The
use of fixed, session or JIT binding.

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 136

6. Applying Services
Users of services need not embrace all of the defined goals. Instead, partially fulfilling the goals can

be enough in certain situations. Fulfilling part of the goals can be done by selecting the instruments to
be utilised. By selecting and combining instruments, service-based systems can be tailored to a certain
need. For example, a fixed point-to-point integration between two systems can initially use a loosely-
defined vertical-service decomposition (an instrument to achieve the goal of modular systems) with a
well-defined communication standard on the technical and interface level (an instrument to achieve the
goal of global interfaces). Later, when the need to integrate more systems arises, the solution can be
extended by using more instruments such as a simple frame-based broker (part of the dynamic-
discovery goal).

By examining the situation where services are to be used, it is possible to identify which service
goals to strive for. Then, using the defined goals it is possible to select the instruments that is best
suited for the given situation.

The next section presents a categorisation of service uses. For each category, the service goals and
instruments that are suitable for application are identified.

6.1. Categories of Service Use
Uses of services can be examined along two dimensions, the extent of service use, and the reach of

service use. How extensive service use is, is determined by deciding if services are used as the key
infrastructure/architecture for system construction, or if services are used for solving single, point-wise
problems. The reach of service use can be divided into use within an organisation and use between
organisations.

The differentiation between infrastructure use and point-wise use of services is important as it
impacts on the need for precise decomposition and standardised service descriptions. Using a small set
of services as point-wise solutions does not require precise decomposition criteria and interconnection
standards. The small amount of services makes it possible to handle differences in composition and
interconnection formats on a case-to-case basis. However, managing a large set of services with
different communication standards and decompositions is expensive. Hence, if services are to be used
as the main infrastructure, the importance of service decomposition and descriptions is increased. To
summarise, using services as the main infrastructure/architecture relies on fulfilment of the goal of
modular resources and partial fulfilment of the goal of global interfaces.

The difference between using services within an organisation and between organisations affects the
need to have precise service descriptions and the need to utilise service brokers. Communication within
an organisation can rely on implicit and partially-specialised protocols. When communicating with
several organisations, the importance of standardized agreements such as global communication
standards and standard business contracts becomes increasingly important. Utilising a service broker
introduces a layer of indirection between the organisations, allowing the organisations to modify the
service implementation and location without affecting the other party. Hence, using services to
communicate between organisations relies on partial fulfilment of the goals of global interfaces and
dynamic discovery.

Combining the dimensions of reach and service-use extent gives four combinations of service use;
point-wise-internal, infrastructure-internal, point-wise-external, and infrastructure-external. Figure 2
summarises how the four uses of services are aided by fulfilment of the three service goals In this
classification of service use each of the two dimensions, reach and extent, is divided into two areas of
service use. This rough division is used to highlight differences in service use. However, examining an
entire organisation’s use of services might very well require a more detailed grading of the two
dimensions.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 137

Each of the four categories of service use and which instruments they utilise are described in more
detail in the following section.

Fig. 2 The service use categories and their required goal fulfilment

6.2. Service Use and Instruments
A Point-wise-internal use of services is when services are used for single solutions within an

organisation, such as when integrating existing legacy systems. Since the use of services is sparse, the
need for precise service decomposition rules is low. The use of standardised technical infrastructures
can help development, but since the use is internal, non-standardised solutions can be used. This kind
of service use can be classified as enterprise application integration (EAI) with services.

An Infrastructure -internal use of services is when services are used as the key architecture for
system development within an organisation. Using clear service decompositions, by, for example,
vertically structuring the services according to business function makes the services easier to combine.
As the amount of services grows, the need for standardised descriptions on the technical and interface
levels increase. Use of services as the main architecture for structuring internal resources will create an
internal collection of ready-to-use services, this approach combined with a message-based architecture
is called an enterprise service bus (ESB) (Chappel, 2002).

A Point-wise-external use of services is when services are used for single point application
integration between two organisations. Compared to point-wise-internal use, point-wise-external use is
categorised by its increased need for standardised technical infrastructures and interface descriptions.
Agreeing upon a non-standardised infrastructure can be difficult, since the two organisations might use
different techniques internally. Using a frame-based broker with fixed or session binding alleviates the
need for a tight coupling between single machines on the consumer and provider sides. This use of
services as a point-wise bridge between organisations can be seen as a static business-to-business
(B2B) connection.

An Infrastructure-external use of services is when services are used to connect multiple
organisations in an automated way. Using services as an external infrastructure enables service
consumers to find services on a global service market. Finding services is made possible by utilising
service brokers. Using specification-based or mediator/agent-based brokering combined with JIT or
session binding enables consumers to find and change providers. Since consumers can communicate
with many providers, it is important to use highly standardised service descriptions and technical
infrastructures. The use of service descriptions at the semantic level enables automatic negotiation of
contracts for service use. Use of services as a global, dynamic interconnection for business can be seen
as a form of dynamic business-to-business (B2B) communication.

The four categories of service-use and their required instruments are summarized in Figure 3.

Infrastructure

Point wise

Internal External

• Modular resources

• Global interfaces (partial)

• Modular resources

• Global interfaces

• Dynamic discovery

• Global interfaces (partial)

• Dynamic discovery (partial)

Low fulfilment of all three goals

Extent

Reach

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 138

Fig. 3 The service use categories and needed instruments

7. Applying the Framework
The framework presented in the previous sections can be used as an aid for selecting suitable

instruments when developing services. The following four-step process can be used as a guideline:

(1) Identify the problem domain.
(2) Map the problem domain to one of the four categories of use, as presented in the framework.
(3) Use the framework for selecting the instruments that need to be used.
(4) Decide how to implement the required instruments.

The next section presents an example of framework use. The example shows how to use the
framework to guide the creation a process-centric infrastructure for enterprise use.

7.1. A Process Centric Infrastructure
A problem that organisations face when moving towards a process-centric structure is that current

IT solutions are organised in a stovepipe-like architecture where each application supports a single
department within the organisation. The result is isolated applicatio ns that are problematic to integrate
(Johannesson and Perjons, 2000). A process-centric organisation requires that all of the applications in
the organisation can be integrated and combined to support new business processes.

By following the four-step guideline previously outlined, it is possible to identify the category of
use and select the appropriate instruments needed when developing services for a process-centric
organisation. The following four paragraphs describe how to follow the guidelines:

(1) Identify the problem domain . In this case the problem is to support a process-centric
organisation with services that can be easily combined and extended to support new business
processes.

(2) Map problem domain to use category. Firstly, the described proble m involves only resources
internal to the organisation. Secondly, the wish to be able to combine a potentially large set of services
suggests that services should be the main way of representing the business IT support. The category of
service use that resembles these requirements is infrastructure-internal use of services.

(3) Select instruments. By using the framework, it can be concluded that infrastructure-internal use
of services requires a well-defined decomposition criteria, along with the use of standardised service

Infrastructure

Point wise

Internal External

ESB
• Vertical and horizontal decompositions
• Standard technical and interface

descriptions

Dynamic B2B
• Vertical and horizontal decompositions
• Standard technical, interface and

semantic descriptions
• Specification or mediator based brokers
• Session or JIT binding

Static B2B
• Standard technical and interface

descriptions

• Frame-based brokers
• Session or fixed time binding

EAI with services
Instruments applied on a case-to-case
basis

Extent

Reach

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 139

descriptions on the technical infrastructure and interface levels. However, the need for advanced
brokering is not an issue in this situation since the services are for intra-organisational use only. Thus
the instruments needed in this situation are well-defined decomposition criteria, as well as service
description and standards on the technical infrastructure and interface level.

(4) Decide how to implement the instruments. When the required instruments are selected, it is first
necessary to select a criterion for decomposition. The organisation in this situation is process-centric,
so that a suitable decomposition criterion might be a vertical decomposition where each service
provides support for a single business process. An additional layer of services can be organised to
support the underlying business functions (another vertical decomposition). After selecting the
decomposition criterion a suitable technical infrastructure needs to be selected. Several vendors
provide both standardised and proprietary technical infrastructures. An example of a suitable technical
infrastructure would be Web-services, using SOAP on top of HTTP as the means for communication.
Using Web-services as the infrastructure, a suitable interface description language would be WSDL.

The suggested solution can be extended with the use of instruments for service descriptions on the
semantic level, such as OWL. Furthermore, the solution can be augmented with an UDDI compliant
broker for intra-organisational use.

8. Conclusion and Future Work
This paper has presented a vision behind software services, and identified three distinct goals that

are a prerequisite for achieving this vision. The instruments required for achieving each of these goals
were presented. Furthermore, a classification of service uses was presented, and it was shown how
different categories of service usage could take advantage of the defined instruments.

These elements have been combined to form a framework for the interconnection of service vision,
goals, instruments and uses. This framework gives us a context for discussing, developing and using
software services.

The potential use of the framework has been demonstrated by proposing a set of instruments needed
to create process-centric services for intra-enterprise use.

The presented framework is a coarse-grained overview of the vision, goals, instruments and uses of
software services. Future work will entail the extension of the framework both in detail and scope. Two
possible extensions to the detail of the framework are to develop guidelines for selecting and
combining decomposition criteria, and to further examine the situations where advanced brokering is
suitable. The scope of the framework can be extended by including a mapping of the described high-
level instruments to currently available technologies such as Web services, ontologies and ebXML.
The scope could also be extended by mapping the use categories to requirements on non-functional
aspects such as security and quality.

9. References
Allen, P., and Frost, S., 1998, “Component-Based Development for Enterprise Systems: Applying the Select

Perspective,” Cambridge University Press.
Andrade, L., and Fiadeiro, J., 2001, ”Coordination Technologies for Web-Services,” OOPSLA Workshop on

Object-Oriented Web Services.

Bellwood, T., Clément, L., Ehnebuske, D., Hately, A., Hondo, M., Husband, Y. L., Januszewski, K., Lee, S.,
McKee, B., Munter, J., and von Riegen, C., 2002, "UDDI Version 3.0," Published Specification, 19 July 2002,
http://uddi.org/pubs/uddi_v3.htm, Accessed 7 Jan 2003.

Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., and Munro, M., 2000, “Service-based
software: the future for flexible software,” Proceedings of the 7th Asia-Pacific Conference on Software
Engineering, APSEC 2000, pp. 214-221.

Journal of Integrated Design and Process Science MARCH 2004, Vol. 8, No. 1, pp. 140

Bennet, K., Munro, M., Gold, N., Layzell, P., Budgen, D., and Brereton, P., 2001a, ”An Architectural Model
for Service-Based Software with Ultra Rapid Evolution,” Proceedings of IEEE International Conference on
Software Maintenance, pp. 292 – 300.

Bennett, K., Jie Xu, Munro, M., Zhuang Hong, Layzell, P., Gold, N., Budgen, D., and Brereton, P., 2001b,
“An architectural model for service-based flexible software,” 25th Annual International Conference on Computer
Software and Applications, COMPSAC, pp. 137 -142.

Brown, A. W., 2000, “Large-Scale Component-based Development,” Prentice Hall Inc.
Chappell, D., 2002, ”Asynchronous Web Services and the Enterprise Service Bus,”

http://www.webservices.org/index.php/article/articleview/352/4/24/, Accessed 7 Jan 2003.
Chinnici, R., Gudin, M., Moreau, J., and Weerawarana, S., 2003, "Web Services Description Language

(WSDL) Version 1.2," W3C Working Draft 24 January 2003.

Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., and Weerawarana, S., 2002, “Business
Process Execution Language for Web Services, Version 1.0,” Public draft release 31 Jul 2002, http://www-
106.ibm.com/developerworks/library/ws-bpel, Accessed 3 Feb 2003.

Dumas, M., O’Sullivan, J. , Heravizadeh, M., Edmond, D., and Ter Hofstede, A., 2001, “Towards a Semantic
Framework for Service Description,” Proceedings of the 9th IFIP Conference on Database Semantics.

Gudin, M., Hadley, M., Mendelsohn, N., Moreau, J., and Nielsen, H. F., 2002, "SOAP Version 1.2," W3C
Candidate Recommendation 19 December 2002.

Fremantle, P., Weerawarana, S., and Khalaf, R., 2002, “Enterprise Services,” Communications of the ACM,
October 2002, Vol. 45, No 10.

Harumi, K., 2000, ”Surveying the E-Services Technical Landscape,” Second International Workshop on
Advanced Issues of E-Commerce and Web-Based Information Systems, pp. 94-101.

Helal, S., Wang, M., Jagatheesan, A., and Krithivasan, R., 2001, “Brokering based self organizing e-service
communities,” Proceedings of the 5th International Symposium on Autonomous Decentralized Systems, pp. 349-
356.

Herzum, P., 2001, “Web Services and Service- Oriented Architectures,” Distributed Enterprise Architecture
Advisory Service, Executive Report Vol. 4, No. 10.

Herzum, P., and Sims, O., 2000, “Business Component Factory,” OMG Press.
Johannesson, P., and Perjons, E., 2000, "Design Principles for Application Integration," 12th Conference on

Advanced Information Systems Engineering, Springer LNCS.
Klein, M., and Bernstein, A., 2001, “Searching for Services on the Semantic Web Using Process Ontologies,”

Proceedings of the Semantic Web Working Symposium.
Lovelock, C., Vandermerwe, S., and Lewis, B., 1996, “Services Marketing,” Prentice Hall Europe.
Monson-Haefel, R., 2001, "Enterprise JavaBeans," O'Reilly & Associates.
Orfali, R., Harkey, D., and Edwards, J., 1996, “The Essential Distributed Objects Survival Guide,” John

Wiley & Sons Inc.
Péraire, C., and Coleman, D., 2000, “Modeling for E-Service Creation,” Technical Report, SRI international.
Piccinelli, G., and Stammers, E., 2001, “From E-Process to E-Networks: and E-Service-oriented approach,”

OOPSLA Workshop on Object-Oriented Web Services.
Platt, D. S, 1999, “Understanding COM+,” Microsoft Press.
Rollings, E., and Wing, J., 1991, ”Specifications as Search Keys for Software Libraries,” Proceedings of the

8th International Conference on Logic Programming.
Smith, M. K., McGuinness D., Volz, R., and Welty, C., 2002, “Web Ontology Language (OWL) Guide

Version 1.0,” W3C Working Draft 4 November 2002.

Stahl, M. , 2002, “Beyond Component-Based Computing,” Communications of the ACM, October 2002, Vol.
45, No 10.

Transactions of the SDPS MARCH 2004, Vol. 8, No. 1, pp. 141

Wald, E., and Stammers, E., 2001, “Out of the Alligator Pool: A Service-Oriented Approach to Application
Development,” EAI Journal, March 2001.

Webber, D., and Kotok, A., 2001, “ebXML: The New Global Standard for Doing Business on the Internet,”
New Riders Publishing.

Yang , J., van den Heuvel, W. J., and Papazoglou, M. P., 2001, “Service Deployment for Virtual Enterprises,”
Australian Computer Science Communications, Vol. 23, Iss. 6.

