
Architectures for Service-oriented Processes 

 
Martin Henkel1, Jelena Zdravkovic2 

1 Stockholm University and Royal Institute of Technology, 
 Department of Computer and System Sciences, Forum 100,  

164 40 Kista, Sweden 
martinh@dsv.su.se 

http://www.dsv.su.se 
2 University of Gävle and Royal Institute of Technology,  

Department of Computer and System Sciences 
801 76 Gävle, Sweden 

jzc@dsv.su.se 
http://www.hig.se 

Abstract. By the use of Web Service technologies and the Internet it is possible 
to lay the foundation for virtual value chains that cross enterprise boundaries. 
As the number of services and their interaction grow, it is evident that the flow 
of message exchange between services needs to be coordinated in a structured 
way. Executable process languages such as BPEL are proposed as an 
instrument for the coordination of services. Executable processes must be 
designed such that they solve technical coordination problems as well as 
provide a fundament for organizations to manage and monitor the progress of 
the business. In this paper we examine how the design of executable processes 
is affected by both technical and business issues. Furthermore, we examine a set 
of architectures that enable the use of executable processes to cater to both 
business and technical needs. We provide fundamental guidelines on how to 
apply the architectures. 

1   Introduction 

Software services are the building block of future systems that integrate existing IT 
assets and thereby provide the basis for building complex cross-enterprise systems. 
Even though the Web Service technologies SOAP and WSDL solve many 
interoperability issues, they do not provide support for the complex task of 
coordinating the execution of software services. Coordination of services involves 
executing and monitoring complex message exchanges, as well as to provide massive 
parallelism and robust error handling. The core of the coordination problem lies in 
controlling the dynamic aspect of service execution. Thus, when examining the 
coordination problem, the focus is on dynamic aspects such as the order of message 
exchange and the timing of messages, rather than static aspects of services such as 
interfaces. Since process descriptions focus on the dynamic aspects, it is natural to use 
processes as a tool for describing and solving coordination problems. Future systems 



will increasingly rely on composing and coordinating individual services to create 
new, complex business interactions in the form of processes [1]. Executable process 
languages such as the Business Process Execution Language for Web Services 
(BPEL4WS,[2]) are specifically targeted towards solving coordination problems. 

A successful process implementation relies on that the executable process can 
capture business aspects as well as handle technical details. Processes modelled to 
close resemble a business will depict the activities, message exchanges and rules of an 
organisation. When this business process is to be realised in a system, additional 
technical issues such as system interoperability and message synchronization must be 
solved. Thus, we identify two perspectives of process design, the business perspective 
and the technical perspective. Seen from the business perspective, executable 
processes offer the ability to monitor and alter the processes according to business 
rules. Workflow systems [3] are an example of processes used from the business 
perspective. Taking the technical perspective, executable processes offer the ability to 
perform complex system integration and synchronization. An example of the technical 
perspective is the numerous messaging patterns [4] that exist to handle system 
coordination. 

In order to cater to both business and technical needs, the business and technical 
perspectives must coexist in future system architectures.  

In this paper we examine the properties of processes designed from the technical 
and business perspectives. We base this examination on a conceptual framework for 
process specifications. Furthermore, we examine three architectures that can help 
merge the two perspectives of processes. We also provide basic guidelines on how to 
apply the architectures. The aim of the paper is to provide an overview of different 
process perspectives, and provide basic guidelines on how to merge them. The work 
presented in this paper is a continuation of previous work presented in [5].  

 This work specifically focuses on technical and business perspectives of 
executable processes. On a much more general level, this problem has been studied by 
other authors as a miss-fit between business and information system functionality ([6], 
[7], [8]). Our use of two perspectives on processes also bears some resemblance with 
the model layers proposed by the Object Management Groups (OMG) Model-Driven 
Architecture (MDA) approach. However, MDA uses model layers to separate models 
from platform technologies [9]. Compared to the work presented in this paper, MDA 
is thus to be considered as a general framework for model transformations. 

This paper is structured as follows. In the following section we define and give a 
concrete example of business and technical processes. In Section 3, we discuss design 
differences between the two process types. Section 4 introduces three architectures 
that combine technical and business issues. Guidelines on how to apply the 
architectures and conclusions are presented in section 5 and 6.  

 



2   Business and Technical Processes 

Analysis of a business might result in the design of one ore more executable 
processes. These designs might later be implemented by using an executable process 
language, such as BPEL4WS. Based on the discussion presented in the Introduction 
section, we distinguish between two types of executable process designs: 

Business processes directly corresponds to the processes that where documented 
during analysis. This means that the executable process reflects the pure business 
perspective, containing the same activities, roles etc as the business process. 

Technical processes are designs that do not correspond directly to the documented 
business processes. This kind of processes is designed to adhere to business as well as 
technical requirements. The motivation for creating a technical process that does not 
resemble the business process is: 

1. The business process cannot be implemented as-is, because of technology 
limitations, for example in programming languages and communication protocols.  

2. The existing software services, when composed in a process, do not match the 
documented business process. 

Since an executable business process (as defined above) is defined in business 
terms, it has the advantage of being easy to understand and modify for people within 
the business. However, technical processes cannot be overlooked since limitations in 
existing system are inevitable.  

An example of a business process and its realization as a technical process is shown 
in Figure 1 (this example is also presented in [5]). The example, in the form of a 
technical process, is based on a case provided by Sandvik, a global industrial 
materials engineering company with offices in 130 countries. A major concern of 
Sandvik is integration and coordination of their existing ERP systems in the form of 
software services. As one of the pioneers in the use of Web services, Sandvik has 
recognized the need to use executable business processes to handle the coordination of 
its services. 

The business process in Figure 1(a) depicts a basic order process where the process 
is triggered by an incoming order request. Since we are using the Business Process 
Modelling Notation (BPMN) [10] we depict the customer with a swimlane/pool 
symbol, message events with encircled envelopes and message flows with dotted 
arrows. After an order confirmation is sent to the customer, the process is forked into 
two parallel flows. A shipment plan is constructed while the order is being processed. 
Later on, the flow is synchronized using an AND-join. Before the end of the process a 
notification that the product has been shipped is sent to the customer. 

Figure 1(b) depicts the realized technical process. This process is an excerpt of the 
process supplied by Sandvik. The technical process is based on existing services, in 
this case the ERP system (depicted by the ERP service pool in Figure 1) and a service 
interface to the customers’ information systems (the customer service pool in 
Figure 1).  

 
 
 
 



 
Fig. 1. Example business process (a) and realized technical process (b) 

 
Compared to the business process, the technical process must adhere to a set of system 
constraints: 
§ S1 – The existing ERP service perform logistics planning and order processing 

in an integrated activity, a notification can be received when this process is 
completed.  

§ S2 – The validation of order information is integrated into the ERP service, order 
confirmation can be sent when the order is received by the ERP service.  

§ S3 – Based on the customers (software) service ability order confirmation should 
be sent as a HTTP message or a FTP file. 

These system constraints affect the realization of the business process. The 
characteristics of the ERP system (S1) prompt us to put shipment planning and order 
processing in a sequence. Since the message event from the ERP system signals when 
the order confirmation can be sent (S2), the sending of the order confirmation is 
placed directly after (instead of before) shipment planning and order processing. 
Furthermore, the usage of different protocols for sending the order confirmation (S3) 
prompts us to use an XOR-split of the process flow. 

Even though the example is small, it shows how a realization of a business process 
can be affected by system constraints. In this example we used a subset of the process 
supplied by Sandvik, for brevity reasons we excluded customer authentication and the 
handling of invoices. We also simplified the handling of protocols, the original 

b) a) 

E
R

P
 service 

Confirm order 

Plan shipment 

Process order 

Send shipment 
advice 

Receive  
order 

Process order 

Plan shipment 

Confirm 
order HTTP 

Confirm 
order FTP 

Send shipment 
advice SMTP 

C
ustom

er service 

Receive order 

Wait for notif. 

Wait for 
shippment notif. 

C
ustom

er 



process handles more protocols than FTP and HTTP for all activities that notify the 
customer. 

The example elucidates the point that realization does change the design of a 
process. In the next section we define process design aspects to provide methodical 
examination of how a business process might differ from a technical process. 

3   Designing Business and Technical Processes 

In this section we examine the design of business and technical processes to identify 
possible differences in respective process designs. To make a structured examination, 
we use a conceptual framework that identifies four aspects of process design. The 
framework is based on modelling aspects of workflows, as proposed in [11] and [12]. 
The first basic aspect of the framework is the functional aspect; it describes how a 
process is decomposed into activities, i.e. what activities are to be executed. The 
behavioural aspect depicts process control flow, i.e. when an activity is to be executed 
in relation to others. The informational aspect concerns content and structure of 
process data. The transactional aspect concerns consistent execution and recovery of 
a set of activities.  

When designing a business as well as a technical process, each of the process 
aspects must be considered. In the rest of the section we describe how each of the four 
aspects may be affected when realizing a business process as a technical process. For 
a more detailed description of the design differences between technical and business 
processes we refer to [5]. 

 

Functional Aspect When comparing business and technical processes from the 
functional perspective we compare how the functionality is composed into activities. 
We also must consider the pre- and post-condition of the activities. Executable 
business processes cater directly to business needs, activities in a business process will 
thus be designed according to the activities in the organization. When designing 
technical processes the design issues will shift towards expressing how technology and 
existing system operations can be combined to solve business problems. The 
functionality of existing systems will be the base for selecting the activities for 
inclusion in a technical process. These design differences might result in the following 
differences that may appear in the functional aspect of a business and a technical 
process: 

 

An activity in the business process corresponds to more than one activity in the 
technical process, where those activities jointly achieve the same goal as the 
activity in the business process.  

Activities in the business and the technical process having similar goal differ in 
pre- and/or post-conditions. 

 

Behavioural Aspect Comparing the behavioural aspects of technical and business 
processes involves examining the criteria’s that governs the process control flow. In 
business processes, the rules that govern the flow coordination of the activities are 
stated by business rules, such that payment should be done before a product is 



shipped. Technical processes must also adhere to the desired business behaviour. 
However, the order in which to perform activities might also be governed by the 
technical features of the back-end systems, for example by dependencies between 
existing services. Due to these design differences the processes might differ in 
sequencing (including parallelism) and in the use of conditional branching. We, 
therefore, identify the differences that may appear in the behavioural aspect of a 
business and a technical process as the following: 

 

Sequentially ordered activities in one process (business or technical) may 
correspond to differently sequenced or parallel ordered activities in the other 
process.  

A condition might have the same, fewer or more branches in a technical process 
compared to a business process.  
 

Informational Aspect The design of the informational aspect concerns the 
information structures used by the process. The design of business processes focus on 
the information need of the business parties; the process information will closely 
resemble the concepts used in the business. The information content used when 
designing a technical process is based on the business concepts. A difference between 
the business and technical processes is however how the information is structured. In 
the technical process, the structure simply needs to be adjusted to fit to the existing 
services and technologies. In addition to the change of structure, the protocols used 
might require the addition of extra service or protocol specific concepts, such as 
system or transaction identifiers. Based on this, we identify the differences that may 
appear in the informational aspect of a business and a technical process: 
 

A technical process may extend/exclude the concepts identified in the business 
process.  

Concepts defined in the business process might correspond to one or more concepts 
in the technical process.  
 

Transactional Aspect Comparing two processes from the transactional perspective 
involves examining similarity in transactional behaviour reflected by specified 
transaction models (atomic vs. long-running [13]) and transaction boundaries. When 
an error occurs the process must return to a valid state by withdrawing results of 
completed activities (by compensation for long-running transactions or by simple 
cancelling for atomic transactions). The focus when designing a business process is to 
keep the process aligned with business contract rules. When designing technical 
processes it must be ensured that no systems or services are put in an inconsistent state 
with respect to the overall process Thus, transactional aspect of a business process, 
with existence of supported systems and services, may differ from a technical process 
in following: 

 

The boundaries of a transaction may differ in the business process and technical 
process.  
The model (atomic vs. long-running) of a transaction differs in the business process 
and the technical process.  
 



In Table 2, below, we summarize the design of technical and business processes for 
the described process aspects.  

Table 2. A summary of design aspects for business and technical processes 

 Functional Behavioural Informational Transactional 
Design 
task 

Decompose into 
activities 

Sequencing of 
activities 

Structure message 
and process 
information 

Select transaction 
model and 
transaction 
boundaries 

Business 
process 
design 

Decompose 
according to 
business activities 

Governed by 
business rules 
and contracts 

According to 
business concepts 

Keep consistent 
business states 

Technical 
process 
design 

Decompose 
according to 
operations in 
existing services 

Governed (partly) 
by features of the 
existing systems 

Business concepts 
split/extended 
according to service 
needs 

Keep systems and 
data in a consistent 
state 

 
Based on the identified differences in realizations of business processes and technical 
processes, in the following section, we discuss abilities for integration of those two 
perspectives in a software system. 

4   Architectures 

Software architectures need to support both business and technical perspectives. Ideal 
would be to have a software architecture that includes both the business and technical 
perspectives of executable processes. Architectures that combine business and 
technical perspectives of processes must be able to handle all, or at least some of the 
process design differences that where discussed in Section 3. An example of a 
difference is that a technical and a corresponding business process might contain 
different number of activities (i.e. they differ in the functional aspect). Even though 
this difference exists, the architecture must be able to convey the state of the business 
process, for example by making it possible to instantly identify the activities that are 
currently executing on the business level. 

When constructing an architecture that support both business and technical aspects 
there are basically three possible approaches: 

a) Use the designed technical process as a starting point and add the features of the 
business process. We call this architecture the Layered architecture. 

b) Use the business process as a fundament, and add technical aspects. This will 
result in what we call an Aspect oriented architecture. 

c) Combine business and technical aspects by identifying “modules” that 
encapsulates technical or business behaviour. This architecture is named the 
Domain service architecture. 

In the following sections we will examine how each of the three architectures 
enables a closer integration between business and technical processes. We base our 



examination on the four process aspects (functional, behavioural, informational and 
transactional) described in section 3. 

4.1   The Layered Architecture 

In a layered architecture, the business process is layered on top of the technical 
process (see Figure 2). The executable business process reflects the states in the 
business, while technical issues are dealt with in the technical process. The two layers 
of processes is kept synchronized, for example by implementing a publish-subscribe 
event system.  

Generally the business process will represent an abstraction of the underlying 
technical process. This is in-line with the common architectural principle of 
abstraction layers [14]. The business process layer is dependent on the technical 
process for executing systems actions, thus this dependency can be categorised as a 
“use” dependency [15].  

 

Fig. 2. Overview of the layered architecture 
 

A prerequisite to using this architecture is that it should possible to perform process 
synchronization between the two layers. In essence the design of all of the four aspects 
of the technical process must be done such that it is possible to keep the four aspects 
of the business process unaltered.  

The functional aspect of a process contains its activities and the pre-and post 
conditions of those activities. In the technical process layer it is possible to break 
down a business activity into several technical activities without disrupting the 
synchronization. Following principles from object-oriented programming [16] pre 
conditions in the technical process can also be weakened in the technical process, 
while post-conditions can be made stronger. However, to maintain synchronization 
between the two layers, the functional aspects must be designed such that an activity 
in the business process corresponds to at least one (unique) activity in the technical 
process. For example, if two activities in the business process correspond to a single 
technical activity, it is not possible to determine which of the business activities that 
are executing.  

Technical process layer 

Business process layer 

Process synchronization 



The behavioural aspect of a process refers to the order of execution of its activities. 
The layered architecture enables the technical process to contain advanced parallel 
execution and synchronisation of activities, this enable for example gathering 
information from several back-end systems. Just as for the functional aspect, the 
behavioural aspects of the technical process cannot deviate too much from the 
behaviour of the business process. A basic criteria for proper synchronization of the 
processes is that the order of the activities in the technical process follows the same 
order as in the business process. Similarly, parallel flows of activities cannot be 
employed on the technical level if the corresponding activities on the business level 
must be executed in sequence. Conditional branches in the business process flow 
should be represented with at least the same amount of branches in the technical 
process. Without following these basic criterias, the business process will behave 
inconsistent. 

Synchronizing the informational aspect of the two processes mean that business 
information present at the business layer must be possible to extract from the technical 
layer. The technical layer can contain additional concepts for handling technical 
issues, such as transaction identifiers. In the technical layer it is also possible to 
duplicate the information used in the business process, this might be useable if the 
information is stored in several systems. A basic requirement of the layered 
architecture is however that the technical layer must be able to represent all the 
concepts of the business process.  

The transactional aspects of the two layers describe the transaction model of the 
processes, as well as transaction boundaries. By using two layers it is possible to 
introduce two-phase commit protocols (atomic transactions) on the technical layer, 
even thought the business level are designed by using long-running transactions. To 
perform proper transaction synchronization between the layers, the transaction model 
in the technical layer must support the same, or a higher level of transaction model 
compared to the business process. For example, if the business process is designed 
using long running transactions, the technical process must support atomic 
transactions or long running transactions. Another limitation of this architecture is that 
the transaction boundaries of the two levels must be designed such that they do not 
overlap. For example, two business activities grouped together into a transaction 
should not be executed as two unrelated transactions on the technical level.  

The main advantage of this architecture is its clear separation between business and 
technical issues. This separation makes it possible to represent a graphical overview of 
the business process, while still enabling detailed monitoring of the technical process. 
However, as described above, the synchronization of the levels can introduce severe 
limitations of the process design. Simply put, the business level must be a “pure” 
abstraction of the technical level. In many cases it is not possible to realize the 
technical level without affecting the business level. An example of this is the business 
and technical processes shown in Figure 1.  In the example, the two processes differ 
too much in the behavioural aspect to be able to coexist in a layered architecture (the 
order of execution of the activities differs). 



6.2   The Aspect Oriented Architecture 

While the layered architecture has the technical process as the basic building block, 
the aspect oriented architecture starts with the business process as the fundament. The 
main idea of this architecture is to add orthogonal technical features to the business 
process without affecting its design. Commonly these orthogonal technical features 
can be expressed as non-functional requirements [17] such as security, transaction 
handling and error handling.  

When the business process is executed the functionality of the aspects is combined 
with the process. This process of at runtime extending code with aspects is commonly 
called “Weaving” [18].  

Fig. 3. Overview of the aspect architecture 
 

Aspects such as those presented in Figure 3 are not the only types of functionality 
that can be expressed as aspects. Any functionality that is generic enough to be 
independent of the actual design of the business process can be added as an aspect. 
Just as for the layered architecture, the aspect architecture cannot be applied to 
implement all business processes. In the following we examine each of the four 
process aspects to single out possible uses of the aspect oriented architecture, and to 
find its limitations. 

The functional and behavioural aspects of a process can partly be realized by using 
the aspect oriented architecture. As an example, the technical process depicted in 
Figure 1 contains activities that handle FTP and HTTP communication. The use of 
these two protocols affect both the functional (number of activities) and the 
behavioural (the conditional process flow) aspect of the process. By constructing an 
aspect that handles protocol selection and invocation it is possible to remove both the 
functional and (some of) the behavioural differences of the processes shown if Figure 
1. The constructed aspect would be invoked whenever a message should be sent to the 
customer. The aspect then selects, dependent on the customer information, the 
appropriate protocol to use (FTP or HTTP). However, aspects cannot replace the 
domain specific parts of the technical process. For example, it is not feasible to 
construct an aspect that handles the difference in the ordering of the activities in the 
process. 

  Technical additions in the informational aspects can be handled by weaving 
aspects into the business process. An example of this could be that certain processes 
need to be identified with a process identifier on the technical level. An aspect can be 
constructed such that upon instantiation of the process a unique process identifier is 

Generic technical aspects 

Business process 
Transactions 

Security 
Errorhandling 



generated. This process identifier can subsequently be used as and identifier when 
connecting to existing back-end systems. However, adding information structures like 
this is delimited to generic, domain agnostic information. For example, adding the 
creation of an order number is not as simple as creating a “technical” identifier. The 
creation of an order number might be tightly governed by business rules, and thus 
cannot be handled on a generic level. 

The transactional aspect concerns transaction model and transaction boundaries. 
Generic handling of transactions is a typical example of where the aspect oriented 
approach can play a major role. In fact, technologies that provide automatic 
transactions handling is already in wide use. Examples are Enterprise Java Bean (EJB) 
component servers and Microsoft enterprise services (formerly COM+). These 
technologies effectively remove the burden of handling transactions from the 
developer. For example automatic transformation from atomic to long-running 
transaction can be provided by generic aspects. The design of the transaction 
boundaries, however, still needs to be decided and implemented by the process 
designer. 

The main advantage of this architecture is that technical features can be moved into 
generic aspects, or middleware products. These aspects and products can then be 
applied to a wide range of business processes. 

Overall the aspect-oriented architecture is a very promising approach to remove 
domain-independent, generic technical functionality out of the core business process. 
While there exist special aspect-oriented languages, such as AspectJ [19], the aspect 
can also be provided by middleware servers. Business Process Management Systems 
(BPMS) provide basic aspects such as scalability and persistence. In the future use of 
the Business Process Execution Language for Web Services (BPEL4WS) will enable 
middleware servers to add more features (like secure communication) to processes. 

6.3   The Domain Service Architecture 

The two previously described architectures started with either the technical process or 
the business process as a fundament. A third approach to creating an architecture that 
support both business and technical perspectives is to combine technical and business 
requirements at the design stage. A viable solution is to let technical and business 
requirements guide the creation of modules that later can be combined using an 
executable process language. This approach is commonly presented as an option when 
building process-based systems [20], [21], [22]. Figure 4 contains a schematic 
overview of a domain service architecture where the modules sales, production 
planning and logistics are coordinated by a process layer.  



Fig. 4. Domain service architecture 

The advantage of this architecture is that it is possible to hide technical details in 
the modules, and thereby only expose a façade to the modules functionality. The 
critical point when employing this architecture is to select a principle that governs the 
decomposition of functionality into modules. Selecting modules according to existing 
business functions are proposed by some authors [20], [23]. This approach is 
illustrated in Figure 4. Another option commonly used when construction component-
based systems is to partition the modules according to central business concepts 
[24][25]. For companies with a large set of legacy systems, existing systems might 
also govern the creation of modules. In the following we will examine possible ways 
to implement the four aspects of processes using the service domain architecture. 

The ability to represent the functional and behavioural aspects of a business 
process is highly dependant on the criteria of decomposition. The granularity of the 
modules and their interfaces decide the level of control the coordinating process can 
have over the modules. For example, a module might encapsulate several business 
activities and represent them as a single operation in the module interface. This 
encapsulation will affect the design of the coordinating process, the level of control 
will be lover at the process level. The example also holds for the behavioural aspect, 
where complex activity dependencies can be encapsulated in a module. The key issue 
here is to design the modules such that they encapsulate technical functions and 
behaviour, rather than hiding high-level business functions and behaviour.  

The informational aspect of processes in the service domain architecture concerns 
the information content that each module exposes to the coordinating process. Using 
this architecture, it is simple to encapsulate technical information in each module. A 
risk when using this architecture is that technical information concepts will affect the 
coordinating process. An example of this is a module that requires a costumer’s digital 
certificate to send a notification. The certificate must be supplied by the process, since 
communication between modules would break the architecture. This implies moving 
certificate handling to the process level, which might be undesired. 

Handling the transactional aspects can be done by firstly implementing module-
internal transactions, and secondly by letting each module implements a transactional 
interface. The transactional interface lets the coordinating process coordinate 
transactions on the business level. A key issue of this architecture is to handle 
differences in transactional models between modules. Basically, conversion of 
transactional protocols can be handled either in the process on in each module.  

Production 
planning 

Logistics Sales 

Coordinating process 



While the service domain architecture provides a good way to isolate technical 
details into modules, it relies heavily on the selection of decomposition criteria for the 
modules.  If technical considerations play a major role when designing the modules, it 
will affect the coordinating process. Since all communication go through the 
coordinating process there is a risk that technical features “creep” into the process. 
Note that this problem is not evident in the layered architecture, since that architecture 
enables communication on the technical level.  

7   Selecting Architecture 

The three architectures to some extent represent extremes, when selecting architecture 
the best option is to combine features of the architectures. 

The layered architecture can be used to provide monitoring capabilities for the 
business, while enabling complex technical processes on a separate layer. As 
discussed before, the needed process synchronization is the Achilles heel of this 
architecture. In practice it might not be possible to implement his architecture in its 
pure form. However, if the process synchronization is made less strict, the architecture 
is applicable in more cases. A “loosened” synchronization can be applied by allowing 
inconsistencies on the business level process. This would yield an executable process 
that indicates the status of the process, rather than to directly correspond to the 
executing process. 

The aspect oriented architecture is applicable as a powerful tool for introducing 
system-wide technical properties. However, domain specific details should not be 
implemented as aspects, since there is not point in adding the complexity of an aspect 
to implement functionality that only concerns a single activity.  

The service domain architecture provides a traditional fundament to build systems 
by dividing the functionality into modules. This is of course applicable to all 
processes. However, the architecture lacks the clear separation of processes provided 
by the layered architecture. The architecture also lacks the possibility to add generic 
technical functionality.  

Given the above discussion, we propose that the features of all the architectures 
should be combined in the following order: 

1) Maximize the use of aspects by identifying technical concerns that affects a large 
part of the activities. Use an aspect oriented language, or an existing middleware 
product to supply these aspects.  

2) Construct a domain service architecture by building modules (services) that 
represent existing business concepts or functions. This enables the coordinating 
process to be as close to the business process as possible. 

3) If needed, supply a business process monitor by implementing a second process 
layer depicting a simplified business process. To make this possible, the 
synchronization criteria of the processes must be relaxed. 

Applying the features of the architectures in the above order makes it possible to 
maximize the advantages of the architectures. 



8   Conclusion 

In this paper we initially identified two types of processes, business and technical. 
These processes cater to partially different needs, and are thus designed differently. 
The possible differences in process design where examined using four aspects of 
process design.  Furthermore, we used the identified process differences to examine 
three architectures that aim to unify business and technical aspects. The three 
architectures represent three different ways to deal with the integration of technical 
and business issues in executable processes. While these architectures can be applied 
directly, we proposed simple guidelines on how to combine the architectures.  

Having a clear separation between business and technical issues is important when 
building an executable process. Our definitions of process types and the examination 
of their design differences can contribute to a better separation of the process types, 
and thus aid in the design process. The presented architectures and guidelines can aid 
this design process further. The architectures are not novel, our contribution is rather 
to examine them in the context of executable processes.  

The three architectures represent three distinct ways to unify technical and business 
perspectives in a single architecture. The layered architecture and the aspect oriented 
architecture focused on the business and technical aspects respectively. The domain 
service architecture is an architecture where technical and business aspects can be 
“mixed” together. These architectures are on an abstract level, and must thus be 
combined with other architectural principles to build large scale enterprise systems. In 
particular, we have not discussed the possibility to “mix” technical and business issues 
in more than two abstraction layers.  

Further work entails examining lover-level architectural principles that can be 
applied when designing executable processes. 

ACKNOWLEDGMENTS 

The authors would like to thank Sandvik for providing the input to the example 
case presented in Section 2. This work is a part of the Serviam project, partly funded 
by the Swedish Agency for Innovation Systems. 

References 

1.  Piccinelli G., Zirpins, C., Lamersdorf W.: The FRESCO Framework: An Overview. 
Proceedings of the 2003 Symposium on Applications and the Internet Workshops. IEEE 
Computer Society (2003), 120-126 

2.  BEA, IBM, Microsoft, SAP and Siebel. Business Process Execution Language for Web 
Services (BPEL4WS). http://www-106.ibm.com/developerworks/library/ws-bpel/, (June 9, 
2004) 

3.  Sharp, A., McDermott, P.: Workflow Modeling. Artech House, Inc., Boston, USA (2001) 
4.  Hohpe, G. et al.: Enterprise Integration Patterns, Addison. Wesley (2003) 



5.  Henkel, M., Zdravkovic, J., Johannesson, P., "Service-based Processes  - Design for 
Business and Technology", Accepted for the International Conference on Service Oriented 
Computing, New York (2004) 

6.  Bubenko, J.A., Jr., Wangler, B.: Objective driven capture of business rules and of 
information systems requirements. In Proceedings of the IEEE Systems Man and 
Cybernetics Conference. Le Touquet, France (1993), 670-677 

7.  Grover, V., Fiedler, K., Teng, J.T.C.: IEEE Transactions on Engineering Management, Vol. 
41, Iss. 3 (1994). 276–284 

8.  Rolland, C.,Prakash, N.: Bridging the Gap Between Organisational Needs and ERP 
Functionality. Journal of Requirements Enigneeering, Vol 5, Iss. 3 (2000). 180-193 

9.  Kleppe, A., Warmer, J., Bast, W.: MDA Explained, Addison-Wesley (2003) 
10.  White, S.: Business Process Modeling Notation Version 1.0, The Business Management 

Initiative (2004) 
11.  Jablonski, S.: A Software Architecture for Workflow Management Systems. In Proceedings 

of the Ninth International Workshop on Database and Expert Systems Applications 
(DEXA’98). Vienna, Austria. IEEE Computer Society (1998). 739-744. 

12.  Rausch-Scott, S.: TriGSflow – Workflow Management Based on Active Object-Oriented 
Database Systems and Extended Transaction Mechanisms. PhD Thesis, University at Linz 
(1997) 

13.  Garcia-Molina, H.: Modeling Long-Running Activities as Nested Sagas. IEEE Data 
Engineering Bulletin, Vol. 14, Iss. 1, (1991). 14–18 

14.  Bass, L., Clements, P. and Kazman, P.: Software architecture in practice. Addison Wesley 
(1998) 

15.  Parnas, D.: Designing software for ease of extension and contraction. IEEE Transactions on 
Software Engineering, (March 1979). 128-138 

16.  Meyer, B.: Applying Design by Contract. IEEE Computer, Vol. 25, Iss. 10, (1992). 40–51 
17.  Cysneiros L., do Prado Leite J.: Non-Functional Requirements: From Elicitaion to 

Modelling Languages. International Conference on Software Engineering (2002) 
18.  Elrad T., Filman, R., Bader A.: Aspect-oriented Programming an Introduction. 

Communications of the ACM, Vol. 44, Iss. 10 (2001) 
19.  AspectJ, www.aspectj.org. (April 2003) 
20.  Wald, E., Stammers, E.: Out of the Alligator Pool: A Service-Oriented Approach to 

Application Development. EAI Journal (March 2001) 
21.  Yang, J., Papazoglou, M.: Interoperation Support for Electronic Commerce. 

Communications of the ACM, Vol 6, Iss. 43 (2000). 39-47 
22.  P. Johannesson, B. Wangler, P. Jayaweera,: Application and Process Integration - 

Concepts, Issues, and Research Directions. Information Systems Engineering Symposium,  
Springer Verlag (2000) 

23.  Channabasavaih, K., Holley, K., Tuggle, E. M.: Migrating to a service-oriented 
architecture, Part2. IBM developerworks,   http://www-
106.ibm.com/developerworks/webservices/library/ws-migratesoa2/, (December 2003) 

24.  Herzum, P., and Sims, O.: Business Component Factory. OMG Press (2000) 
25.  Cheesman, J., and Daniels, J.: UML Components. Addison-Wesley (2001) 
 


